Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bohari M. Yamin* and

 M. Sukeri M. YusofSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.026$
$w R$ factor $=0.068$
Data-to-parameter ratio $=20.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-1-(2-pyridyl- κN)ethanone 4-phenylthio-semicarbazonato- $\kappa^{2} N^{1}$,S]bis[iodomercury(II)]

The title compound, $\left[\mathrm{Hg}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S}\right)_{2} \mathrm{I}_{2}\right]$, is a dimeric complex of mercury(II) with the N, N, S-tridentate electrondonor Schiff base ligand and lies on a crystallographic twofold axis. The two Hg atoms are linked by two bridging S atoms, forming a rectangular base with $\mathrm{Hg}-\mathrm{S}$ bond lengths of 2.6490 (12) and 2.6173 (11) A. The two tridentate ligands are almost perpendicular to the base, resulting in an open box-like structure. The geometry of the Hg atoms is between trigonal bipyramidal and square pyramidal, but closer to the latter.

Comment

2-Acetylpyridine 4-phenylthiosemicarbazone is a potential N, N, S-tridentate electron-donor ligand, as shown by the octahedral complex $\left[\mathrm{Mn}\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\right]$ (Usman et al., 2002). The title compound, (I), is a rare example of a mercury complex with Schiff bases having a coordination number greater than 2, and differs from its zinc and cadmium analogues. The molecule is dimeric with two Hg atoms linked by two S -atom bridges, forming the rectangular base of an open box-like structure (Fig. 1) and lying on a twofold axis. The Hg atom is chelated by the 2-acetylpyridine 4-phenylthiosemicarbazone ligand in an N, N, S-tridentate manner via the azomethine N , pyridyl N and thiolate S atoms.

The geometry of both Hg atoms is between trigonal bipyramidal and square pyramidal, but closer to the latter with some degree of distortion. Atoms N3, N4, S1 ${ }^{\text {i }}$ (symmetry code in Table 1) and I1 occupy the basal plane, with I1 displaced by 1.491 (1) \AA. The other atoms deviate by less than $0.10 \AA$ from the mean plane. The cis angles about atom Hg 1 are between 67.63 (12) and 107.74 (2) ${ }^{\circ}$. The apical position is occupied by atom S1, with the $\mathrm{S} 1-\mathrm{Hg} 1-$ (basal atom) angles close to 90° (Table 1).

Received 9 November 2004
Accepted 26 January 2005
Online 5 February 2005

Figure 1
The molecular structure of the title compound, (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. The suffix A corresponds to symmetry code (i) in Table 1.

The $\mathrm{Hg}-\mathrm{S}$ bond lengths in the complex are shorter than those in the dimeric $\operatorname{bis}(o$-chlorophenylbenzoylthiourea- κS)diiodomercury(II) complex (Yusof \& Yamin, 2004) of 2.6840 (16) \AA. In addition, the bridging $\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$ bond length is shorter than $\mathrm{Hg} 1-\mathrm{S} 1$. The $\mathrm{C} 7-\mathrm{S} 1$ bond length of 1.768 (4) \AA is longer compared to 1.690 (6) \AA in $\operatorname{bis}(o-$ chlorophenylbenzoylthiourea- κS)diiodomercury(II). Other bond lengths and angles are in normal ranges (Allen et al., 1987; Orpen et al., 1989) and in agreement with other metal-bis-Schiff base complexes, such as $\left[\mathrm{Mn}\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)_{2}\right]$ (Usman et al., 2002).

The symmetry-related ligands are essentially planar. The $\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 7 / \mathrm{N} 2^{\mathrm{i}} / \mathrm{N} 3^{\mathrm{i}} / \mathrm{C} 8^{\mathrm{i}}-\mathrm{C} 10^{\mathrm{i}} / \mathrm{C} 13^{\mathrm{i}} / \mathrm{C} 14^{\mathrm{i}}$ fragment has a maximum deviation of 0.041 (6) \AA for atom C10 ${ }^{i}$. Atoms N $4{ }^{\mathrm{i}}$, $\mathrm{C} 11^{\mathrm{i}}, \mathrm{C} 12^{\mathrm{i}}$ and $\mathrm{Hg} 1^{\mathrm{i}}$ are displaced by 0.144 (5), -0.176 (13), -0.116 (8) and -0.266 (1) \AA from the mean plane, respectively. Both ligands make a dihedral angle with each other of $9.07(11)^{\circ}$. The rectangular base, $\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{Hg} 1^{\mathrm{i}}-\mathrm{S} 1^{\mathrm{i}}$, is also planar, with atoms Hg and S deviating, on opposite sides, by 0.068 (1) \AA from the mean plane. The ligands are almost perpendicular to the base with an angle of $85.47(8)^{\circ}$. In the structure, the molecule is stabilized by the intermolecular hydrogen bond, $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 1^{\mathrm{ii}}$ [symmetry code: (ii) $\frac{3}{2}-x$, $\frac{1}{2}-y, 1-z$; Table 2], forming a zigzag chain parallel to the a axis.

Experimental

A solution of pyridylethylenephenylhydrazone ($1.50 \mathrm{~g}, 5.5 \mathrm{mmol}$) in ethanol (50 ml) was added dropwise to an ethanol solution (50 ml) containing an equimolar amount of mercury iodide in a two-necked round-bottomed flask. The solution was refluxed for about 3 h . The

Figure 2
Packing diagram of compound (I), viewed down the c axis. Dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.
clear solution was filtered and colourless crystals were obtained after evaporation over a period of five days.

Crystal data

$\left[\mathrm{Hg}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{~S}\right)_{2} \mathrm{I}_{2}\right]$
$M_{r}=1193.67$
Monoclinic, $C 2 / c$
$a=18.466$ (3) A
$b=16.745$ (2) \AA
$c=13.9140$ (19) \AA
$\beta=129.174$ (2) ${ }^{\circ}$
$V=3335.3$ (8) \AA^{3}
$Z=4$

$$
D_{x}=2.377 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8944 reflections
$\theta=1.8-27.6^{\circ}$
$\mu=11.20 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.38 \times 0.18 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-	3875 independent reflections
detector diffractometer	3277 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.033$
Absorption correction: multi-scan	$\theta_{\max }=27.6^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-24 \rightarrow 24$
$T_{\min }=0.072, T_{\max }=0.233$	$k=-21 \rightarrow 21$
21199 measured reflections	$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0336 P)^{2}\right.} \\
&+5.0737 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.31 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{N} 4$	$2.387(4)$	$\mathrm{Hg} 1-\mathrm{S} 1$	$2.6490(12)$
$\mathrm{Hg} 1-\mathrm{N} 3$	$2.398(3)$	$\mathrm{Hg} 1-\mathrm{I} 1$	$2.6635(4)$
$\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.6173(11)$	$\mathrm{N} 2-\mathrm{C} 7^{\mathrm{i}}$	$1.290(5)$
			$100.24(9)$
$\mathrm{N} 4-\mathrm{Hg} 1-\mathrm{N} 3$	$67.63(12)$	$\mathrm{N} 4-\mathrm{Hg} 1-\mathrm{I} 1$	$141.58(8)$
$\mathrm{N} 4-\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$	$140.71(9)$	$\mathrm{N} 3-\mathrm{Hg} 1-\mathrm{I} 1$	$107.74(2)$
$\mathrm{N} 3-\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$	$73.32(9)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{I} 1$	$120.20(2)$
$\mathrm{N} 4-\mathrm{Hg} 1-\mathrm{S} 1$	$95.73(9)$	$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{I} 1$	$86.22(3)$
$\mathrm{N} 3-\mathrm{Hg} 1-\mathrm{S} 1$	$97.71(8)$	$\mathrm{Hg} 1^{\mathrm{i}}-\mathrm{S} 1-\mathrm{Hg} 1$	
$\mathrm{~S} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{S} 1$	$93.48(3)$		

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{I1}^{\mathrm{ii}}$	0.86	3.01	$3.769(4)$	147

Symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}-y, 1-z$.
After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent C or N atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=$
$1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The highest electron-density peak is located $0.91 \AA$ from atom I1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No.09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Usman, A., Razak, I. A., Chantrapromma, S., Fun, H.-K., Sreekanth, A., Sivakumar, S. \& Kurup, M. R. P. (2002). Acta Cryst. C58, m461-m463.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. M. S. \& Yamin, M. B. (2004). Acta Cryst. E60, m98-m99.

